
Memory leak or calculus?
A graphic novel

stu@improbable.io

May 2016

1 Memory leak?

Making distributed systems is hard. At Improbable, we like it when our system works,
and it makes us sad when it breaks. For this reason, we have a number of test simulations
we deploy regularly on our cloud infrastructure and comprehensively measure, to give us
some degree of confidence that everything is working properly and we haven’t introduced
performance or correctness regressions.

Recently, one of our engineers noticed something worrying: one of our test deployments
had been running for several hours, and the graph tracking this particular deployment’s
memory usage was going up and to the right. The increase in memory usage was slow,
but unmistakable: it looked pretty obviously like a memory leak1. In a system like
SpatialOS that has to run for a long time without failure or loss of stability, any sort
of memory leak, even a very small one, is certainly cause for concern. Worse, bugs like
these can be quite tricky to investigate and sort out.

However, after studying our metrics more closely we noticed something odd. The
offending graph was an aggregation over a metric that tracked memory usage in a spatial
way. That is, we were looking at a graph of the maximum memory usage per unit of space
over various sub-regions in the world. Drilling down, we saw that the so-called memory
leak did not manifest uniformly throughout the world: in fact, there was a conspicuous
pattern. The severity of the memory leak in a given sub-region was strongly correlated
with the relative location in space of that sub-region. We observed that memory usage
was more-or-less stable toward the edges of the world, and only began to trend upwards
as we considered sub-regions closer to the centre of the world.

2 Test players

To understand what was going on, it’s necessary explain what our test simulation actually
does. It’s designed to look a bit like a simplified version of any open-world online game:

1The SpatialOS kernel runs on the JVM, but this in no way precludes the possibility of memory leaks:
for example, perhaps there is some internal data structure that we populate as necessary but (under
certain circumstances) neglect to clean up—so it grows without bound over time.

1

we have a large world, filled with a thousand or so player entities controlled by dummy
clients. These dummy clients connect from outside our cloud and, to SpatialOS, are
indistinguishable from real clients controlled by actual humans—but they are automated.
These “test players” are supposed to be reasonable simulacra of genuine players: they
wander non-deterministically through the world, can observe each other, and SpatialOS
has to carry out all the same data synchronisation work that would be necessary if they
were real players.

What’s important is exactly how these mock-players navigate the world. They start
out distributed randomly throughout the world, and their subsequent behaviour is gov-
erned by the following steps:

1. Let the starting point xi be the player’s current position in the world.

2. Pick a destination point xi+1 uniformly at random in the world.

3. Proceed from xi to xi+1 at a fixed speed.

4. Upon reaching xi+1, go back to step 1.

x0

x1

x2

x3

Figure 1: An example of a path a test player might take through the world.

Assuming this process repeats forever: on average, where can we expect the players
to end up? That is, sampling a player’s position at an arbitrary time gives rise to some
probability distribution over the world itself—what does this distribution look like?

Our thought process was this: intuitively, it seems like the distribution should be
weighted more heavily towards the centre of the world. After all, there are many possible
routes a player might take through the middle of the world, but far fewer through points
on the edge. If this is correct, then the upwards trend in memory usage could be
explained simply by the fact that the thousand players start out distributed uniformly
(so no matter where one looks in the world, there is a comparable amount of work to
be done) but tend towards this limiting, centre-heavy distribution (so regions of space

2

towards the centre of the world eventually become disproportionately complex, and
require more resources to simulate).

Intuitive reasoning is all well and good, but to be sure we need something more
rigorous.

3 Calculus

In the case of our test simulation, the world is a (large) three-dimensional cube, but for
simplicity’s sake we analyze the case where the world is the unit interval [0, 1].

A player’s trajectory through the world can be viewed as an (infinite) sequence of path
segments, where each path segment has a pair of endpoints (xi and xi+1) and is traversed
in time proportional to |xi+1 − xi|. The probability distribution of a player’s position
in the world at some arbitrary time can be expressed as a probability density function2

p (z), where z ∈ [0, 1] represents a position in the world. This can be computed by
summing the contribution from each possible path segment, weighted by the likelihood
that a player is currently traversing that path segment:

p (z) =

∫ 1

0

∫ 1

0

f (x0, x1) δx0,x1 (z)

|x1 − x0|
dx1 dx0.

Here δx0,x1 (z) is 1 if z lies on the path segment from x0 to x1 (i.e. min (x0, x1) 6 z 6
max (x0, x1)) and 0 otherwise, and f (x0, x1) is the probability density function giving
the distribution for which path segment is currently being traversed at an arbitrary
time. This can be read as combination of probability density functions: f (x0, x1) means
“given we are on the way from x0 to x1”, and δx0,x1 (z)/|x1 − x0| is the probability
density function for a single traversal between x0 and x1.

By symmetry we can assume x0 6 x1 and rewrite this as

p (z) = 2

∫ z

0

∫ 1

z

f (x0, x1)

x1 − x0
dx1 dx0.

Now, path segments are chosen uniformly at random at each endpoint, but since the
player takes a longer time to traverse longer path segments, the likelihood of a path
segment being the current one at an arbitary time is proportional the length of the
segment. Therefore, with normalisation,

f (x0, x1) =
|x1 − x0|

S
with

S =

∫ 1

0

∫ 1

0
|x1 − x0| dx1 dx0

= 2

∫ 1

0

∫ 1

x0

(x1 − x0) dx1 dx0

=

∫ 1

0

(
1− 2x0 + x20

)
dx0 =

1

3
.

2https://en.wikipedia.org/wiki/Probability_density_function

3

https://en.wikipedia.org/wiki/Probability_density_function

Cancelling, we have

p (z) = 6

∫ z

0

∫ 1

z
1 dx1 dx0 = 6

∫ z

0
(1− z) dx0 = 6z (1− z) .

Note that this has all the properties we expect: it’s symmetric around z = 1
2 , positive

on [0, 1], and its integral over the whole world is 1. That is, p (z) really is a probability
density function, and the quadratic distribution3 it describes is a plausible explanation
for our “memory leak”. Better still, we verified this result empirically with a simple
one-dimensional simulation of our test players’ behaviour (a simulation of a simulation,
if you will).

0 0.5 1
0

0.5

1

1.5

z

p
(z

)

Figure 2: The graph of p (z) = 6z (1− z).

4 Resolution

We now have an explanation, but the situation isn’t ideal. What if this odd evolution
in the test simulation’s memory usage as the test players slowly congregate toward the
centre of the world hides a real memory leak?

One obvious solution, now that we have this formula, is to initially distribute the
players in the world according to p (z) (or a higher-dimension generalisation)—then the
simulation will be steady-state, at least.

On the other hand, it could cause some confusion if different regions in the test
deployment have wildly different resource requirements. To avoid this, it might be even
better if we could somehow modify the test players’ behaviour such that they maintain
a consistent uniform distribution despite their random movement. One might suppose

3https://en.wikipedia.org/wiki/U-quadratic_distribution

4

https://en.wikipedia.org/wiki/U-quadratic_distribution

that we could weight each choice of destination point away from the middle in order to
cancel out p (z) and obtain a uniform distribution. Unfortunately, this does not seem to
be possible: doing so would amount to finding a density function g with∫ z

0

∫ 1

z
g (x0) g (x1) dx1 dx0 = C,

where C is some constant. Letting G be the antiderivative of g with G (0) = 0 and
G (1) = 1, the left-hand side is G (z) (1−G (z)). But G (1−G) = C is a quadratic
equation and so has at most two solutions; so G is a step function and g must be zero
almost everywhere.

By analogy, even in the discrete version (choosing from only n possible destination
points spaced evenly along the unit interval) there is no way to obtain a uniform distri-
bution except in the trivial cases where n ≤ 3.

The only practical way to do fix the problem, then, is to use a qualitatively different
process for controlling the players’ behaviour: for instance, a random walk on a bounded
n-dimensional lattice4, which is well-known to converge to a uniform distribution.

x0 x1

x2 x3

Figure 3: A random walk on a bounded 2-dimensional lattice. Points not actually on the grid
will never be visited at all, but we can make the grid arbitrarily fine-grained, and
distribution over the grid is uniform.

5 Appendix: a variant of the original problem

Mostly by accident, we also solved the case where the test players don’t have constant
speed, but instead each path segment is traversed in constant time. This is exactly the
same thing as saying that each path segment is equally likely to be the current one

4https://en.wikipedia.org/wiki/Random_walk#Lattice_random_walk

5

https://en.wikipedia.org/wiki/Random_walk#Lattice_random_walk

at some arbitrary time, so f (x0, x1) = 1 and the density function becomes the (more
difficult) integral

p (z) = 2 lim
t→0

∫ z−t

0

∫ 1

z+t

1

x1 − x0
dx1 dx0.

Naming the double integral in the above equation I (z, t) we have

I (z, t) =

∫ z−t

0

∫ 1

z+t

1

x1 − x0
dx1 dx0

=

∫ z−t

0
[ln (1− x0)− ln (z + t− x0)] dx0.

Note that − (a− x) ln (a− x)− x is an antiderivative of ln (a− x), so

I (z, t) = [(z + t− x0) ln (z + t− x0)− (1− x0) ln (1− x0)]z−t0

= 2t ln (2t)− (1− z + t) ln (1− z + t)− (z + t) ln (z + t) .

Taking the limit as t→ 0 we have

p (z) = 2 ln

[
(1− z)z−1

zz

]
.

Again, this turns out to be a well-behaved, positive, symmetric function over [0, 1].
Furthermore, its integral over this domain is 1, which can be seen by considering

lim
t→0

∫ 1−t

t
p (z) dz = lim

t→0
(P (1− t)− P (t))

where P (z) = ln (1− z) + z (1 + p (z)) + z2 ln (z/ (1− z)) is an antidervative of p (z).

6

0 0.5 1
0

0.5

1

1.5

z

p
(z

)

Figure 4: The graph of p (z) = 2 ln
[

(1− z)z−1
/
zz
]
, shown here with 6z (1− z) for comparison

in light grey.

7

	Memory leak?
	Test players
	Calculus
	Resolution
	Appendix: a variant of the original problem

